AtCoder Beginner Contest 110

D - Factorization


Time limit時間制限 : 2sec / Memory limitメモリ制限 : 1024MB

配点 : 400

問題文

正整数 N, M が与えられます。

a_1 \times a_2 \times ... \times a_N = M となる正整数からなる長さ N の数列 a が何通りあるかを 10^9+7 で割った余りを求めてください。

ただし、数列 a'a'' が異なるとは、ある i が存在して a_i' \neq a_i'' であることをいいます。

制約

  • 入力はすべて整数である
  • 1 \leq N \leq 10^5
  • 1 \leq M \leq 10^9

入力

入力は以下の形式で標準入力から与えられる。

N M

出力

条件を満たす正整数からなる数列が何通りあるかを 10^9 + 7 で割った余りを出力せよ。


入力例 1

2 6

出力例 1

4

\{a_1, a_2\} = \{1, 6\}, \{2, 3\}, \{3, 2\}, \{6, 1\}4 通りの数列が条件を満たします。


入力例 2

3 12

出力例 2

18

入力例 3

100000 1000000000

出力例 3

957870001

Score : 400 points

Problem Statement

You are given positive integers N and M.

How many sequences a of length N consisting of positive integers satisfy a_1 \times a_2 \times ... \times a_N = M? Find the count modulo 10^9+7.

Here, two sequences a' and a'' are considered different when there exists some i such that a_i' \neq a_i''.

Constraints

  • All values in input are integers.
  • 1 \leq N \leq 10^5
  • 1 \leq M \leq 10^9

Input

Input is given from Standard Input in the following format:

N M

Output

Print the number of the sequences consisting of positive integers that satisfy the condition, modulo 10^9 + 7.


Sample Input 1

2 6

Sample Output 1

4

Four sequences satisfy the condition: \{a_1, a_2\} = \{1, 6\}, \{2, 3\}, \{3, 2\} and \{6, 1\}.


Sample Input 2

3 12

Sample Output 2

18

Sample Input 3

100000 1000000000

Sample Output 3

957870001

Submit提出する